1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
| $ bash scripts/test/sthv1/6.sh something: 174 classes => shift: True, shift_div: 8, shift_place: blockres
Initializing PAN with base model: resnet50. PAN Configurations: input_modality: RGB num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.8 img_feature_dim: 256 => base model: resnet50 Adding temporal shift... => Using 3-level VAP => Using twice sample for the dataset... video number:11522 something: 174 classes => shift: True, shift_div: 8, shift_place: blockres
Initializing PAN with base model: resnet50. PAN Configurations: input_modality: PA num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.8 img_feature_dim: 256 => base model: resnet50 Adding temporal shift... => Using 3-level VAP => Using twice sample for the dataset... video number:11522 something: 174 classes => shift: True, shift_div: 8, shift_place: blockres
Initializing PAN with base model: resnet50. PAN Configurations: input_modality: PA num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.8 img_feature_dim: 256 => base model: resnet50 Adding temporal shift... => Using 3-level VAP => Using twice sample for the dataset... video number:11522 something: 174 classes => shift: True, shift_div: 8, shift_place: blockres
Initializing PAN with base model: resnet50. PAN Configurations: input_modality: RGB num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.8 img_feature_dim: 256 => base model: resnet50 Adding temporal shift... => Using 3-level VAP => Using twice sample for the dataset... video number:11522 something: 174 classes => shift: True, shift_div: 8, shift_place: blockres
Initializing PAN with base model: resnet50. PAN Configurations: input_modality: Lite num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.8 img_feature_dim: 256 => base model: resnet50 Adding temporal shift... => Using 3-level VAP => Converting the ImageNet model to a PAN_Lite init model => Done. PAN_lite model ready... => Using twice sample for the dataset... video number:11522 something: 174 classes => shift: True, shift_div: 8, shift_place: blockres
Initializing PAN with base model: resnet50. PAN Configurations: input_modality: Lite num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.8 img_feature_dim: 256 => base model: resnet50 Adding temporal shift... => Using 3-level VAP => Converting the ImageNet model to a PAN_Lite init model => Done. PAN_lite model ready... => Using twice sample for the dataset... video number:11522 video 0 done, total 0/11522, average 1.315 sec/video, moving Prec@1 50.000 Prec@5 75.000 video 160 done, total 160/11522, average 0.300 sec/video, moving Prec@1 57.738 Prec@5 86.310 video 320 done, total 320/11522, average 0.314 sec/video, moving Prec@1 55.793 Prec@5 85.366 video 480 done, total 480/11522, average 0.318 sec/video, moving Prec@1 57.582 Prec@5 85.656 video 640 done, total 640/11522, average 0.318 sec/video, moving Prec@1 56.636 Prec@5 83.796 video 800 done, total 800/11522, average 0.322 sec/video, moving Prec@1 55.569 Prec@5 82.673 video 960 done, total 960/11522, average 0.322 sec/video, moving Prec@1 55.062 Prec@5 82.541 video 1120 done, total 1120/11522, average 0.321 sec/video, moving Prec@1 56.206 Prec@5 83.067 video 1280 done, total 1280/11522, average 0.321 sec/video, moving Prec@1 56.522 Prec@5 83.307 video 1440 done, total 1440/11522, average 0.320 sec/video, moving Prec@1 56.354 Prec@5 82.942 video 1600 done, total 1600/11522, average 0.320 sec/video, moving Prec@1 56.468 Prec@5 83.022 video 1760 done, total 1760/11522, average 0.320 sec/video, moving Prec@1 55.826 Prec@5 82.579 video 1920 done, total 1920/11522, average 0.320 sec/video, moving Prec@1 55.705 Prec@5 82.573 video 2080 done, total 2080/11522, average 0.321 sec/video, moving Prec@1 55.603 Prec@5 82.375 video 2240 done, total 2240/11522, average 0.321 sec/video, moving Prec@1 55.783 Prec@5 82.429 video 2400 done, total 2400/11522, average 0.321 sec/video, moving Prec@1 55.399 Prec@5 82.018 video 2560 done, total 2560/11522, average 0.321 sec/video, moving Prec@1 55.335 Prec@5 82.009 video 2720 done, total 2720/11522, average 0.321 sec/video, moving Prec@1 55.389 Prec@5 82.111 video 2880 done, total 2880/11522, average 0.320 sec/video, moving Prec@1 55.090 Prec@5 82.168 video 3040 done, total 3040/11522, average 0.320 sec/video, moving Prec@1 54.921 Prec@5 82.283 video 3200 done, total 3200/11522, average 0.321 sec/video, moving Prec@1 54.426 Prec@5 82.170 video 3360 done, total 3360/11522, average 0.320 sec/video, moving Prec@1 54.365 Prec@5 82.452 video 3520 done, total 3520/11522, average 0.321 sec/video, moving Prec@1 54.223 Prec@5 82.115 video 3680 done, total 3680/11522, average 0.321 sec/video, moving Prec@1 54.094 Prec@5 81.860 video 3840 done, total 3840/11522, average 0.321 sec/video, moving Prec@1 54.314 Prec@5 81.861 video 4000 done, total 4000/11522, average 0.321 sec/video, moving Prec@1 54.167 Prec@5 81.737 video 4160 done, total 4160/11522, average 0.321 sec/video, moving Prec@1 54.079 Prec@5 81.694 video 4320 done, total 4320/11522, average 0.321 sec/video, moving Prec@1 53.997 Prec@5 81.608 video 4480 done, total 4480/11522, average 0.321 sec/video, moving Prec@1 53.922 Prec@5 81.640 video 4640 done, total 4640/11522, average 0.321 sec/video, moving Prec@1 53.894 Prec@5 81.497 video 4800 done, total 4800/11522, average 0.321 sec/video, moving Prec@1 53.765 Prec@5 81.448 video 4960 done, total 4960/11522, average 0.321 sec/video, moving Prec@1 53.462 Prec@5 81.200 video 5120 done, total 5120/11522, average 0.321 sec/video, moving Prec@1 53.432 Prec@5 81.162 video 5280 done, total 5280/11522, average 0.322 sec/video, moving Prec@1 53.423 Prec@5 81.127 video 5440 done, total 5440/11522, average 0.321 sec/video, moving Prec@1 53.616 Prec@5 81.351 video 5600 done, total 5600/11522, average 0.321 sec/video, moving Prec@1 53.709 Prec@5 81.384 video 5760 done, total 5760/11522, average 0.321 sec/video, moving Prec@1 53.589 Prec@5 81.224 video 5920 done, total 5920/11522, average 0.321 sec/video, moving Prec@1 53.492 Prec@5 81.275 video 6080 done, total 6080/11522, average 0.322 sec/video, moving Prec@1 53.400 Prec@5 81.340 video 6240 done, total 6240/11522, average 0.322 sec/video, moving Prec@1 53.457 Prec@5 81.354 video 6400 done, total 6400/11522, average 0.322 sec/video, moving Prec@1 53.480 Prec@5 81.445 video 6560 done, total 6560/11522, average 0.321 sec/video, moving Prec@1 53.426 Prec@5 81.532 video 6720 done, total 6720/11522, average 0.321 sec/video, moving Prec@1 53.404 Prec@5 81.495 video 6880 done, total 6880/11522, average 0.321 sec/video, moving Prec@1 53.296 Prec@5 81.402 video 7040 done, total 7040/11522, average 0.321 sec/video, moving Prec@1 53.348 Prec@5 81.413 video 7200 done, total 7200/11522, average 0.321 sec/video, moving Prec@1 53.344 Prec@5 81.396 video 7360 done, total 7360/11522, average 0.321 sec/video, moving Prec@1 53.312 Prec@5 81.325 video 7520 done, total 7520/11522, average 0.321 sec/video, moving Prec@1 53.374 Prec@5 81.389 video 7680 done, total 7680/11522, average 0.322 sec/video, moving Prec@1 53.356 Prec@5 81.413 video 7840 done, total 7840/11522, average 0.322 sec/video, moving Prec@1 53.313 Prec@5 81.397 video 8000 done, total 8000/11522, average 0.322 sec/video, moving Prec@1 53.247 Prec@5 81.381 video 8160 done, total 8160/11522, average 0.322 sec/video, moving Prec@1 53.293 Prec@5 81.428 video 8320 done, total 8320/11522, average 0.321 sec/video, moving Prec@1 53.338 Prec@5 81.460 video 8480 done, total 8480/11522, average 0.322 sec/video, moving Prec@1 53.228 Prec@5 81.374 video 8640 done, total 8640/11522, average 0.322 sec/video, moving Prec@1 53.076 Prec@5 81.406 video 8800 done, total 8800/11522, average 0.322 sec/video, moving Prec@1 53.134 Prec@5 81.460 video 8960 done, total 8960/11522, average 0.322 sec/video, moving Prec@1 53.066 Prec@5 81.479 video 9120 done, total 9120/11522, average 0.321 sec/video, moving Prec@1 53.024 Prec@5 81.453 video 9280 done, total 9280/11522, average 0.321 sec/video, moving Prec@1 53.025 Prec@5 81.449 video 9440 done, total 9440/11522, average 0.322 sec/video, moving Prec@1 53.059 Prec@5 81.425 video 9600 done, total 9600/11522, average 0.321 sec/video, moving Prec@1 53.143 Prec@5 81.495 video 9760 done, total 9760/11522, average 0.321 sec/video, moving Prec@1 53.184 Prec@5 81.511 video 9920 done, total 9920/11522, average 0.322 sec/video, moving Prec@1 53.112 Prec@5 81.467 video 10080 done, total 10080/11522, average 0.322 sec/video, moving Prec@1 53.202 Prec@5 81.572 video 10240 done, total 10240/11522, average 0.322 sec/video, moving Prec@1 53.230 Prec@5 81.616 video 10400 done, total 10400/11522, average 0.322 sec/video, moving Prec@1 53.324 Prec@5 81.572 video 10560 done, total 10560/11522, average 0.322 sec/video, moving Prec@1 53.340 Prec@5 81.558 video 10720 done, total 10720/11522, average 0.322 sec/video, moving Prec@1 53.384 Prec@5 81.572 video 10880 done, total 10880/11522, average 0.322 sec/video, moving Prec@1 53.398 Prec@5 81.585 video 11040 done, total 11040/11522, average 0.322 sec/video, moving Prec@1 53.385 Prec@5 81.598 video 11200 done, total 11200/11522, average 0.322 sec/video, moving Prec@1 53.462 Prec@5 81.620 video 11360 done, total 11360/11522, average 0.322 sec/video, moving Prec@1 53.439 Prec@5 81.606 video 11520 done, total 11520/11522, average 0.321 sec/video, moving Prec@1 53.524 Prec@5 81.592 [0.89552239 0.4375 0.3047619 0.67164179 0.47368421 0.49137931 0.69402985 0.5 0.73786408 0.73786408 0.52 0.52777778 0.41489362 0.41935484 0.8089172 0.48 0.24698795 0.35 0.49593496 0.37333333 0.416 0.63793103 0.44444444 0.41176471 0.51612903 0.41666667 0.52173913 0.4 0.6969697 0.74603175 0.63636364 0.53846154 0.87037037 0.25274725 0.26086957 0.16666667 0.8045977 0.85294118 0.07894737 0.62962963 0.7107438 0.66 0.72307692 0.69387755 0.71153846 0.67213115 0.47058824 0.43157895 0.29213483 0.72932331 0.61320755 0. 0.24 0.55 0.23809524 0.20833333 0.51515152 0.5 0. 0.7755102 0.78787879 0.25 0.62 0.12727273 0.16666667 0.55555556 0.11111111 0.24242424 0.43661972 0.42307692 0.51612903 0.25 0.47368421 0.56 0.83333333 0.58064516 0.29411765 0.47058824 0.40909091 0.82926829 0.11428571 0.11904762 0.43333333 0.15789474 0.62857143 0.39655172 0.64864865 0.77777778 0.11111111 0.08928571 0.59459459 0.75609756 0.55813953 0.61111111 0.75700935 0.25806452 0.03703704 0.16666667 0.60818713 0.51470588 0.3877551 0.58333333 0.234375 0.53061224 0.70731707 0.6952381 0.62921348 0.75362319 0.43859649 0.36263736 0.62745098 0.11764706 0.64864865 0.38095238 0.66981132 0.46666667 0.32727273 0.78723404 0.31707317 0.60416667 0.81818182 0.60784314 0.41818182 0.45 0.27777778 0.51020408 0.45283019 0.62962963 0.17241379 0.68269231 0.3 0.18518519 0.39473684 0.26666667 0.70198675 0.46551724 0.14285714 0.2 0.15254237 0.65789474 0.66 0.3255814 0.52272727 0.48305085 0.54666667 0.50704225 0.64150943 0.20895522 0.53125 0.736 0.67272727 0.29032258 0.35 0.88888889 0.5952381 0.19607843 0.24590164 0.35714286 0.53465347 0.34375 0.48148148 0.375 0.36 0.4137931 0.69607843 0.81818182 0.9223301 0.91509434 0.74074074 0.7027027 0.47619048 0.61151079 0.7080292 0.71052632] upper bound: 0.5069670549400674 -----Evaluation is finished------ Class Accuracy 48.98% Overall Prec@1 53.52% Prec@5 81.59% /home/hs/anaconda3/envs/dzl/lib/python3.7/site-packages/numpy/core/_asarray.py:136: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray return array(a, dtype, copy=False, order=order, subok=True)
|