1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
| $ python test_models.py something --VAP --batch_size=10 -j=4 --test_crops=1 --test_segments=8 --weights=pretrained/PAN_PA_something_resnet50_shift8_blockres_avg_segment8_e80.pth.tar something: 174 classes => shift: True, shift_div: 8, shift_place: blockres
Initializing PAN with base model: resnet50. PAN Configurations: input_modality: PA num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.8 img_feature_dim: 256
=> base model: resnet50 Adding temporal shift... => Using 3-level VAP video number:11522 video 0 done, total 0/11522, average 13.141 sec/video, moving Prec@1 50.000 Prec@5 80.000 video 200 done, total 200/11522, average 0.950 sec/video, moving Prec@1 48.095 Prec@5 82.857 video 400 done, total 400/11522, average 0.675 sec/video, moving Prec@1 47.805 Prec@5 80.244 video 600 done, total 600/11522, average 0.586 sec/video, moving Prec@1 49.836 Prec@5 80.164 video 800 done, total 800/11522, average 0.537 sec/video, moving Prec@1 47.037 Prec@5 78.148 video 1000 done, total 1000/11522, average 0.480 sec/video, moving Prec@1 46.139 Prec@5 77.624 video 1200 done, total 1200/11522, average 0.449 sec/video, moving Prec@1 47.273 Prec@5 77.686 video 1400 done, total 1400/11522, average 0.440 sec/video, moving Prec@1 47.163 Prec@5 77.021 video 1600 done, total 1600/11522, average 0.420 sec/video, moving Prec@1 46.957 Prec@5 76.522 video 1800 done, total 1800/11522, average 0.406 sec/video, moving Prec@1 46.188 Prec@5 76.133 video 2000 done, total 2000/11522, average 0.387 sec/video, moving Prec@1 46.070 Prec@5 76.070 video 2200 done, total 2200/11522, average 0.368 sec/video, moving Prec@1 46.018 Prec@5 75.928 video 2400 done, total 2400/11522, average 0.358 sec/video, moving Prec@1 46.307 Prec@5 75.187 video 2600 done, total 2600/11522, average 0.350 sec/video, moving Prec@1 46.398 Prec@5 75.364 video 2800 done, total 2800/11522, average 0.336 sec/video, moving Prec@1 46.619 Prec@5 75.480 video 3000 done, total 3000/11522, average 0.330 sec/video, moving Prec@1 46.611 Prec@5 75.714 video 3200 done, total 3200/11522, average 0.325 sec/video, moving Prec@1 46.386 Prec@5 75.607 video 3400 done, total 3400/11522, average 0.318 sec/video, moving Prec@1 46.305 Prec@5 75.630 video 3600 done, total 3600/11522, average 0.311 sec/video, moving Prec@1 46.260 Prec@5 75.208 video 3800 done, total 3800/11522, average 0.304 sec/video, moving Prec@1 46.194 Prec@5 75.144 video 4000 done, total 4000/11522, average 0.297 sec/video, moving Prec@1 46.010 Prec@5 74.988 video 4200 done, total 4200/11522, average 0.293 sec/video, moving Prec@1 45.914 Prec@5 74.893 video 4400 done, total 4400/11522, average 0.288 sec/video, moving Prec@1 45.782 Prec@5 74.807 video 4600 done, total 4600/11522, average 0.290 sec/video, moving Prec@1 45.792 Prec@5 74.555 video 4800 done, total 4800/11522, average 0.289 sec/video, moving Prec@1 45.530 Prec@5 74.470 video 5000 done, total 5000/11522, average 0.285 sec/video, moving Prec@1 45.389 Prec@5 74.311 video 5200 done, total 5200/11522, average 0.283 sec/video, moving Prec@1 45.528 Prec@5 74.299 video 5400 done, total 5400/11522, average 0.282 sec/video, moving Prec@1 45.564 Prec@5 74.251 video 5600 done, total 5600/11522, average 0.279 sec/video, moving Prec@1 45.704 Prec@5 74.314 video 5800 done, total 5800/11522, average 0.276 sec/video, moving Prec@1 45.611 Prec@5 74.148 video 6000 done, total 6000/11522, average 0.273 sec/video, moving Prec@1 45.674 Prec@5 74.260 video 6200 done, total 6200/11522, average 0.270 sec/video, moving Prec@1 45.749 Prec@5 74.235 video 6400 done, total 6400/11522, average 0.266 sec/video, moving Prec@1 45.803 Prec@5 74.368 video 6600 done, total 6600/11522, average 0.264 sec/video, moving Prec@1 45.719 Prec@5 74.433 video 6800 done, total 6800/11522, average 0.261 sec/video, moving Prec@1 45.551 Prec@5 74.347 video 7000 done, total 7000/11522, average 0.258 sec/video, moving Prec@1 45.578 Prec@5 74.508 video 7200 done, total 7200/11522, average 0.255 sec/video, moving Prec@1 45.423 Prec@5 74.452 video 7400 done, total 7400/11522, average 0.252 sec/video, moving Prec@1 45.452 Prec@5 74.345 video 7600 done, total 7600/11522, average 0.250 sec/video, moving Prec@1 45.427 Prec@5 74.428 video 7800 done, total 7800/11522, average 0.249 sec/video, moving Prec@1 45.314 Prec@5 74.507 video 8000 done, total 8000/11522, average 0.246 sec/video, moving Prec@1 45.268 Prec@5 74.469 video 8200 done, total 8200/11522, average 0.243 sec/video, moving Prec@1 45.311 Prec@5 74.531 video 8400 done, total 8400/11522, average 0.241 sec/video, moving Prec@1 45.268 Prec@5 74.530 video 8600 done, total 8600/11522, average 0.239 sec/video, moving Prec@1 45.203 Prec@5 74.553 video 8800 done, total 8800/11522, average 0.237 sec/video, moving Prec@1 45.255 Prec@5 74.620 video 9000 done, total 9000/11522, average 0.236 sec/video, moving Prec@1 45.161 Prec@5 74.584 video 9200 done, total 9200/11522, average 0.234 sec/video, moving Prec@1 45.179 Prec@5 74.604 video 9400 done, total 9400/11522, average 0.232 sec/video, moving Prec@1 45.228 Prec@5 74.633 video 9600 done, total 9600/11522, average 0.230 sec/video, moving Prec@1 45.265 Prec@5 74.631 video 9800 done, total 9800/11522, average 0.228 sec/video, moving Prec@1 45.301 Prec@5 74.699 video 10000 done, total 10000/11522, average 0.227 sec/video, moving Prec@1 45.305 Prec@5 74.715 video 10200 done, total 10200/11522, average 0.225 sec/video, moving Prec@1 45.260 Prec@5 74.760 video 10400 done, total 10400/11522, average 0.224 sec/video, moving Prec@1 45.312 Prec@5 74.774 video 10600 done, total 10600/11522, average 0.223 sec/video, moving Prec@1 45.297 Prec@5 74.807 video 10800 done, total 10800/11522, average 0.225 sec/video, moving Prec@1 45.412 Prec@5 74.875 video 11000 done, total 11000/11522, average 0.223 sec/video, moving Prec@1 45.441 Prec@5 74.877 video 11200 done, total 11200/11522, average 0.222 sec/video, moving Prec@1 45.468 Prec@5 74.844 video 11400 done, total 11400/11522, average 0.220 sec/video, moving Prec@1 45.451 Prec@5 74.812 [0.86567164 0.25 0.24761905 0.59701493 0.39473684 0.45689655 0.62686567 0.29411765 0.52427184 0.62135922 0.4 0.41666667 0.25531915 0.32258065 0.61146497 0.42 0.23493976 0.25 0.34146341 0.28 0.248 0.60344828 0.5 0.35294118 0.5483871 0.33333333 0.43478261 0.4 0.66666667 0.61904762 0.54545455 0.5 0.75925926 0.15384615 0.26086957 0.19444444 0.81609195 0.7745098 0.13157895 0.55555556 0.69421488 0.66 0.60769231 0.55102041 0.71153846 0.60655738 0.45588235 0.33684211 0.21348315 0.59398496 0.48113208 0. 0.28 0.45 0.19047619 0.16666667 0.36363636 0.46875 0.08333333 0.70408163 0.81818182 0.13888889 0.56 0.13636364 0.16666667 0.34259259 0.12962963 0.10606061 0.35211268 0.34615385 0.48387097 0.17857143 0.39473684 0.48 0.75 0.32258065 0.23529412 0.47058824 0.40909091 0.80487805 0.08571429 0.21428571 0.36666667 0.15789474 0.6 0.34482759 0.63513514 0.63492063 0.05555556 0.03571429 0.56756757 0.70731707 0.48837209 0.50925926 0.61682243 0.16129032 0. 0.16666667 0.58479532 0.48529412 0.41836735 0.42592593 0.15625 0.57142857 0.6097561 0.54285714 0.40449438 0.56521739 0.31578947 0.34065934 0.58823529 0. 0.5 0.19047619 0.38679245 0.43333333 0.25454545 0.61702128 0.26829268 0.54166667 0.71590909 0.58823529 0.30909091 0.425 0.19444444 0.28571429 0.43396226 0.46296296 0.11034483 0.60576923 0.24 0.11111111 0.26315789 0.33333333 0.52317881 0.39655172 0. 0.11666667 0.10169492 0.60526316 0.61 0.23255814 0.38636364 0.33050847 0.49333333 0.45070423 0.52830189 0.14925373 0.4375 0.68 0.65454545 0.33870968 0.4 0.77777778 0.48809524 0.07843137 0.31147541 0.35714286 0.35643564 0.1875 0.48148148 0.275 0.3 0.31034483 0.64705882 0.75757576 0.90291262 0.8490566 0.69444444 0.72972973 0.31428571 0.56834532 0.62773723 0.55263158] upper bound: 0.4377580829893891 -----Evaluation is finished------ Class Accuracy 41.77% Overall Prec@1 45.42% Prec@5 74.83% E:\Program Files\Anaconda3\envs\tsm\lib\site-packages\numpy\core\_asarray.py:136: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray return array(a, dtype, copy=False, order=order, subok=True)
|